

WG2 Summary: Part 2

Daniel M. Kaplan

Transforming Lives.Inventing the Future.www.iit.edu

Muon Collider 2011
Telluride, CO, 27 June – 1 July 2011

Outline

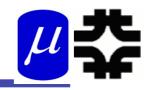
- "Cooling" session (Wed., 10:50–12:30)
- "SC Magnets for Cooling" session (Wed., 15:50–17:20)
- "Acceleration and Ring" session (Thurs., 10:50–12:30)

Outline

- "Cooling" session (Wed., 10:50–12:30)
- "SC Magnets for Cooling" session (Wed., 15:50–17:20)
- "Acceleration and Ring" session (Thurs., 10:50–12:30)

Caveat: Impossible to do justice to ≈ 5 hours' worth of talks in 15 minutes!

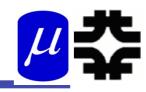
This is just my (necessarily subjective) impression of the highlights



I. Neuffer: Muon Capture for a Muon Collider

Outline

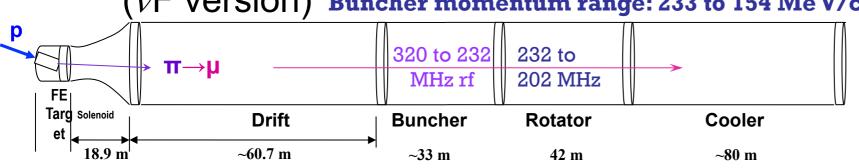
- Motivation
 - μ⁺-μ⁻ Collider front end
- > Produce, collect and cool as many muons as possible
 - Start with v-Factory IDS design study
 - Reoptimize for Collider
 - Shorter bunch train
 - Higher energy capture, shorter front-end
 - Larger gradients
- > Bunch Recombiner
 - Time reverse to combine
- Beam Loss problem
 - Chicane, Absorber, shielding
- > Discussion



I. Neuffer: Muon Capture for a Muon Collider

Outline

- Motivation
 - μ⁺-μ⁻ Collider front end
- Produce, collect and cool as many muons as possible
 - Start with v-Factory IDS design study
 - Reoptimize for Collider
 - Shorter bunch train
 - Higher energy capture, shorter front-end
 - Larger gradients
- > Bunch Recombiner
 - Time reverse to combine
- > Beam Loss problem
 - Chicane, Absorber, shielding
- > Discussion

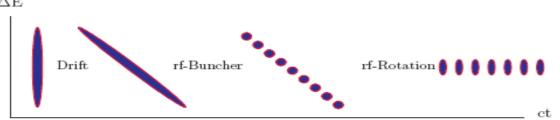


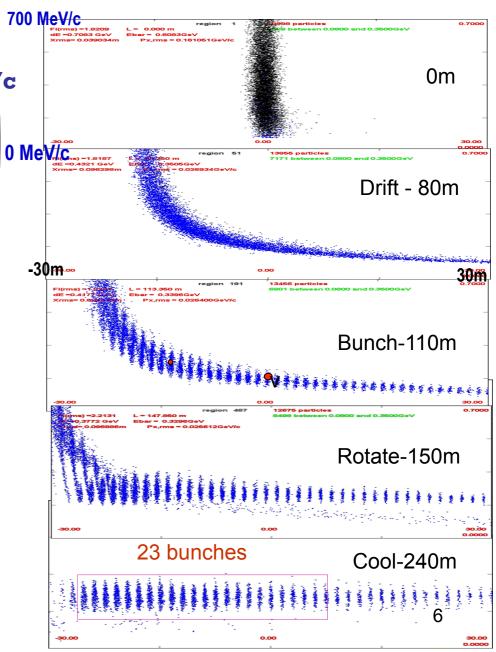


I. Neuffer: Muon Capture for a Muon Collider

"Frequency vernier" approach:

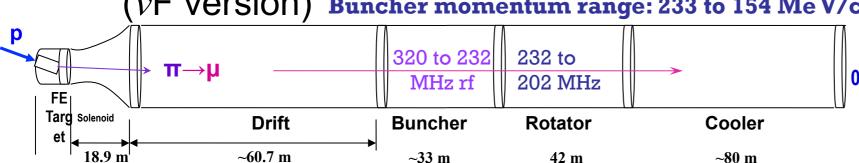
(ν F Version) Buncher momentum range: 233 to 154 MeV/c

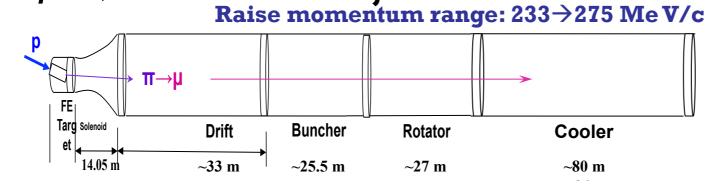


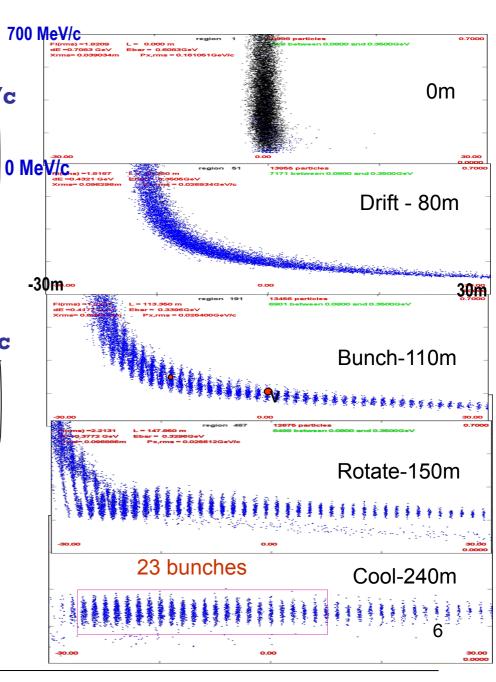


I. Neuffer: Muon Capture for a Muon Collider

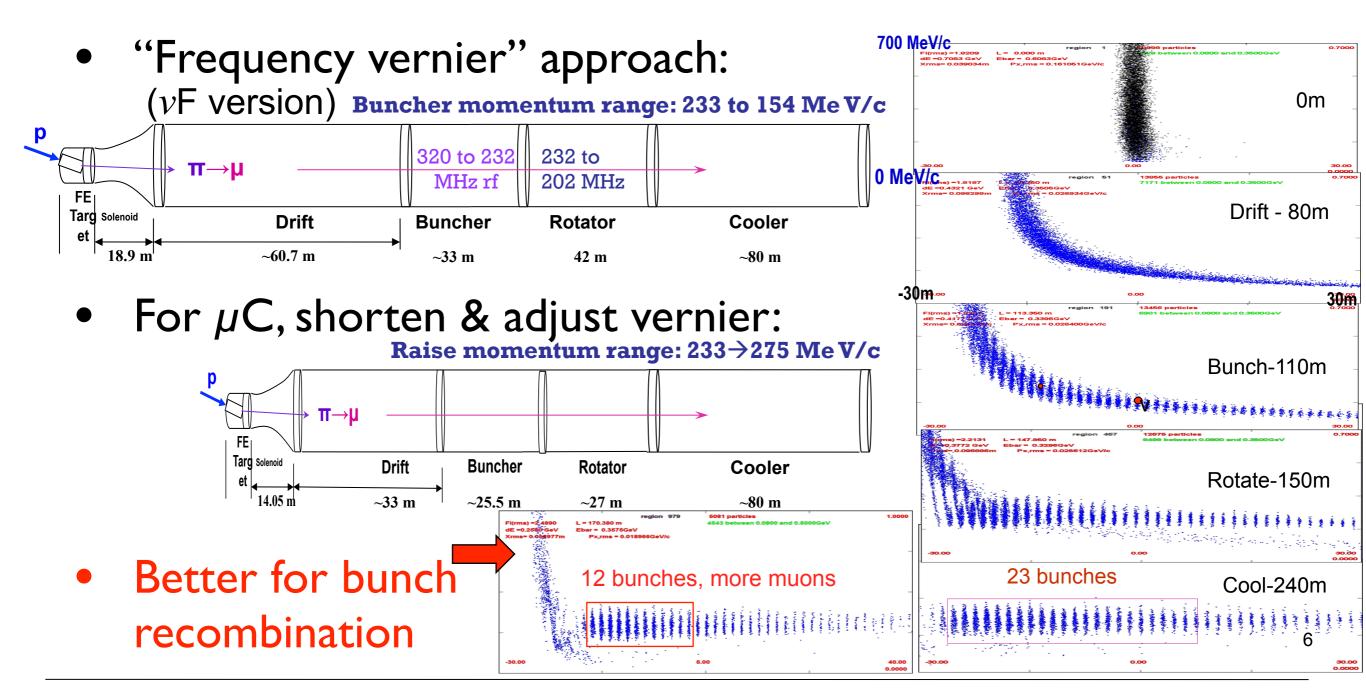
"Frequency vernier" approach: (vF version) Buncher momentum range: 233 to 154 Me V/c 320 to 232 232 to $\pi \rightarrow \mu$ MHz rf 202 MHz FE Targ Solenoid Drift Buncher Rotator Cooler 18.9 m ~60.7 m ~33 m 42 m ~80 m ΔE

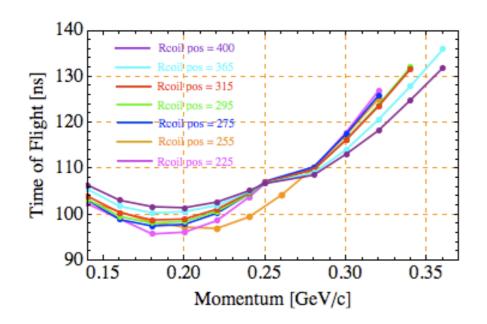


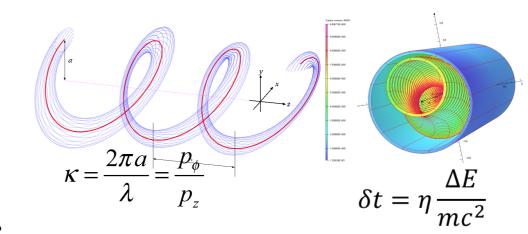

I. Neuffer: Muon Capture for a Muon Collider


"Frequency vernier" approach:

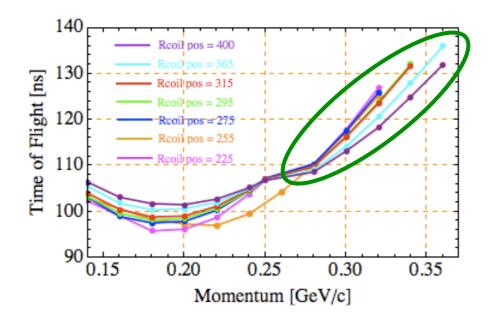
(vF version) Buncher momentum range: 233 to 154 Me V/c

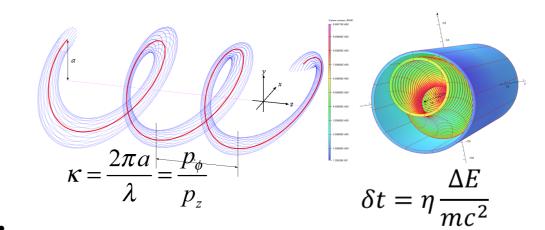

For μ C, shorten & adjust vernier:



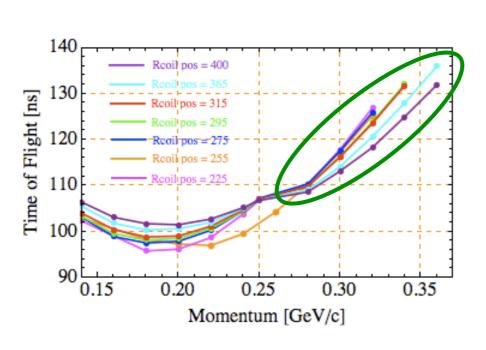


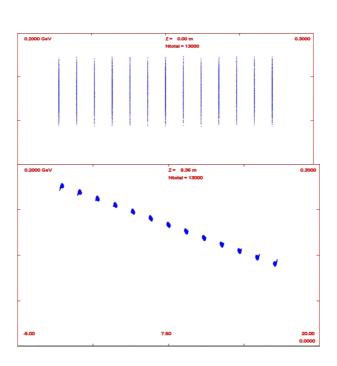
- Also discussed: helical bunch recombiner
- Linear time-momentum relation attractive for bunch recombination:

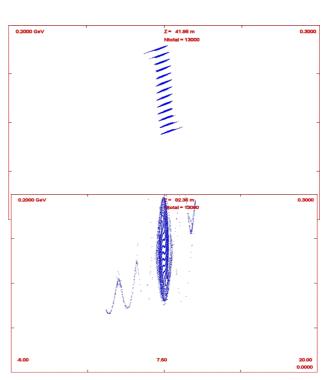




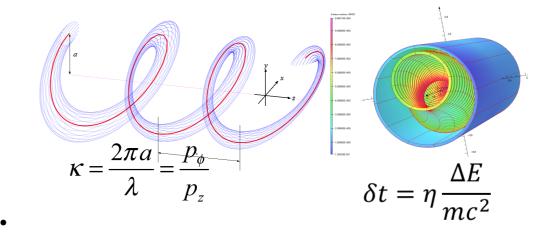
- Also discussed: helical bunch recombiner
- Linear time-momentum relation attractive for bunch recombination:

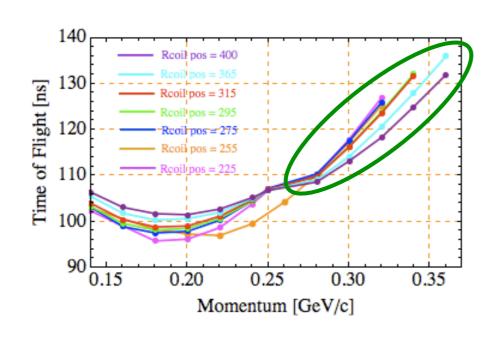


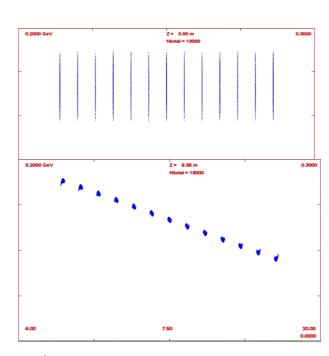


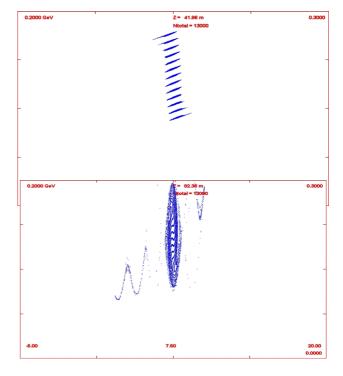


- Also discussed: helical bunch recombiner
- Linear time-momentum relation attractive for bunch recombination:








I. Neuffer: Muon Capture for a Muon Collider

- Also discussed: helical bunch recombiner
- Linear time-momentum relation attractive for bunch recombination:

See his talk for much more!

2. Roberts: Cooling

2. Roberts: Cooling

Outline

- Muon Ionization Cooling
 - Everything you need to know in 30 seconds
- The Devil is in the Details
 - Brief Descriptions of 6-D Cooling Techniques
 - Brief Descriptions of Final Cooling Techniques
 - Briefer Descriptions of Other Techniques
- God is in the Details
 - Putting It All Together
 - System-Level Considerations
- The Details are in the Details
 - MAP Cooling Efforts in the Next Year or So
- Summary

2. Roberts: Cooling

Summary

- Muon Ionizati
 - Everything y
- The Devil is in
 - Brief Descrip
 - Brief Descrip
 - Briefer Desc
- God is in the
 - Putting It All
 - − System-Leve
- The Details a
 - MAP Cooling
- Summary

 We have mature conceptual designs for three 6-D cooling techniques:

> Guggenheim Helical Cooling Channel FOFO Snake

 We have a mature conceptual design for one final cooling technique, albeit with serious challenges:

High-field solenoids

We have a good start on a promising new final cooling technique:
 Epicyclic PIC

_p.cyo...

- We have a good start on the additional components.
- We need to perform complete simulations of every component, including matching.

The details are daunting, and there is a lot of work remaining to prepare for the cooling down-selection.

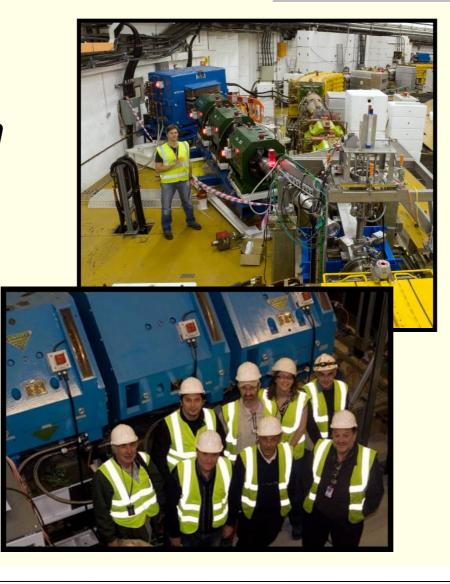
3. Coney: MICE



3. Coney: MICE

Outline

- Introduction
- MICE Description
- Step 1 Results
- Cooling Channel Status
- Conclusions



3. Coney: MICE

Outline

- Introduction
- MICE Description
- Step 1 Results
- Cooling Channel Status
- Conclusions

Conclusions:

3. Coney: MICE

Outline

- Introduction
- MICE Description
- Step 1 Results
- Cooling Channel Status
- Conclusions

Conclusions:

MICE Step 1 datataking complete

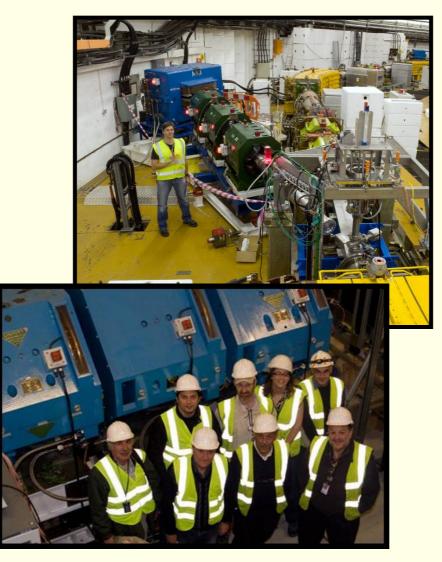
3. Coney: MICE

Outline

- Introduction
- MICE Description
- Step 1 Results
- Cooling Channel Status
- Conclusions

Conclusions:

- MICE Step 1 datataking complete
- Innovation: while awaiting spectrometer solenoids, measured beam emittance using time-of-flight detectors alone!



3. Coney: MICE

Outline

- Introduction
- MICE Description
- Step 1 Results
- Cooling Channel Status
- Conclusions

Conclusions:

- MICE Step 1 datataking complete
- Innovation: while awaiting spectrometer solenoids, measured beam emittance using time-of-flight detectors alone!
- MICE muon beam understood and ready for arrival of spectrometer solenoids and cooling channel

1. Ogitsu: Radiation Hardness of LTS and HTS SC

1. Ogitsu: Radiation Hardness of LTS and HTS SC

Contents

- Why KEK (J-PARC cryogenics section) is studying Radiation Resistant SC Magnets
- Radiation Hardness of SC Magnet
- Present R&D and Future Plan
- Summary

Needed for JPARC high-power SuperΩ and COMET muon facilities

I. Ogitsu: Radiation Hardness of LTS and HTS SC

Contents

- Why KEK (J-PARC cryogenics section) is studying Radiation Resistant SC Magnets
- Radiation Hardness of SC Magnet
- Present R&D and Future Plan
- Summary:

Needed for JPARC high-power SuperΩ and COMET muon facilities

I. Ogitsu: Radiation Hardness of LTS and HTS SC

Contents

- Why KEK (J-PARC cryogenics section) is studying Radiation Resistant SC Magnets
- Needed for JPARC high-power Super Ω and COMET muon facilities

- Radiation Hardness of SC Magnet
- Present R&D and Future Plan
- Summary:
 - Literature indicates NbTi, Nb₃Sn, YBCO all OK up to 10²² n/m²
 - Irradiation studies done on Al, Cu stabilizers
 - Tentative design guideline: 10²² n/m², 10 MGy. (≅ITER spec.)
 - Current R&D priority: Stabilizers and Glues
 - Thermal cycle to room temperature may help to recover properties of metals, but not organic materials

2. Shen: Generating Very High Magnetic Field using a round-wire HTS conductor & Quench protection of HTS magnets

2. Shen: Generating Very High Magnetic Field using ...

Muon collider designs demand 30-50 T solenoids

- A transformational opportunity for high-field science
 - But it is also a quantum leap in technology.
- © Challenges to 30+ T HTS magnets:
 - Engineering the conductor to carry >200 A/mm² in 20-50 T
 - Managing stress >200 MPa
 - Protecting magnet from quenches
- We recently significantly improved the J_e of a round-wire HTS conductor to 600 A/mm² at 4.2 K, 20 T.
- Quench is an old problem but needs new solution in HTS magnets
 - Finding a novel quench detection method is the key.

2. Shen: Generating Very High Magnetic Field using...

Muon collider designs demand 30-50 T solenoids

- A transformational opportunity for high-field science \(\bigsim \bigvery \bigver
 - But it is also a quantum leap in technology.
- © Challenges to 30+ T HTS magnets:
 - Engineering the conductor to carry >200 A/mm² in 20-50 T
 - Managing stress >200 MPa
 - Protecting magnet from quenches
- We recently significantly improved the J_e of a round-wire HTS conductor to 600 A/mm² at 4.2 K, 20 T.
- Quench is an old problem but needs new solution in HTS magnets
 - Finding a novel quench detection method is the key.

2. Shen: Generating Very High Magnetic Field using...

Muon collider designs demand 30-50 T solenoids

- A transformational opportunity for high-field science \(\bigsim \bigvery \bigver
 - But it is also a quantum leap in technology.
- © Challenges to 30+ T HTS magnets:
 - Engineering the conductor to carry >200 A/mm² in 20-50 T
 - Managing stress >200 MPa
 - Protecting magnet from quenches

- BSCCO

 We recently significantly improved the J_e of a round-wire HTS conductor to 600 A/mm² at 4.2 K, 20 T. ^
- Quench is an old problem but needs new solution in HTS magnets
 - Finding a novel quench detection method is the key.

2. Shen: Generating Very High Magnetic Field using...

Muon collider designs demand 30-50 T solenoids

- A transformational opportunity for high-field science \(\bigsim \bigvery \bigver
 - But it is also a quantum leap in technology.
- © Challenges to 30+ T HTS magnets:
 - Engineering the conductor to carry >200 A/mm² in 20-50 T
 - Managing stress >200 MPa
 - Protecting magnet from quenches
- BSCCO

 We recently significantly improved the J_e of a round-wire HTS conductor to 600 A/mm² at 4.2 K, 20 T. ^
- Quench is an old problem but needs new solution in HTS magnets
 - Finding a novel quench detection method is the key.

3. Gupta: R&D Towards 40T Solenoids at BNL

3. Gupta: R&D Towards 40T Solenoids at BNL

High Field Solenoid Projects at BNL

- > ~35 T HTS/Nb₃Sn s.c. solenoid for Muon Collider (PBL/BNL SBIRs)
 - ☐ 34 HTS coils already built and tested using over 3 km of conductor
- > ~40T (~20+T HTS) insert coil PBL/BNL SBIR (~20+T comes from HTS)
 - ☐ 23 T already demonstrated in the background field of NHMFL
- > ~25 T large aperture HTS solenoid for SMES (ARPA-E funded)
 - □ R&D would directly benefit high field solenoids for SMES
- ➤ A very brief summary of selected HTS R&D on related topics (e.g. quench protection, stress limit, radiation damage) and other HTS programs at BNL

3. Gupta: R&D Towards 40T Solenoids at BNL

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

High Field Solenoid Projects at BNL

- > ~35 T HTS/Nb₃Sn s.c. solenoid for Muon Collider (PBL/BNL SBIRs)
 - ☐ 34 HTS coils already built and tested using over 3 km of conductor
- > ~40T (~20⁺T HTS) insert coil PBL/BNL SBIR (~20⁺T comes from HTS)
 - ☐ 23 T already demonstrated in the background field of NHMFL
- > ~25 T large aperture HTS solenoid for SMES (ARPA-E funded)
 - □ R&D would directly benefit high field solenoids for SMES
- ➤ A very brief summary of selected HTS R&D on related topics (e.g. quench protection, stress limit, radiation damage) and other HTS programs at BNL

3. Gupta: R&D Towards 40T Solenoids at BNL

3. Gupta: R&D Towards 40T Solenoids at BNL

High Field Solenoid Projects at BNL

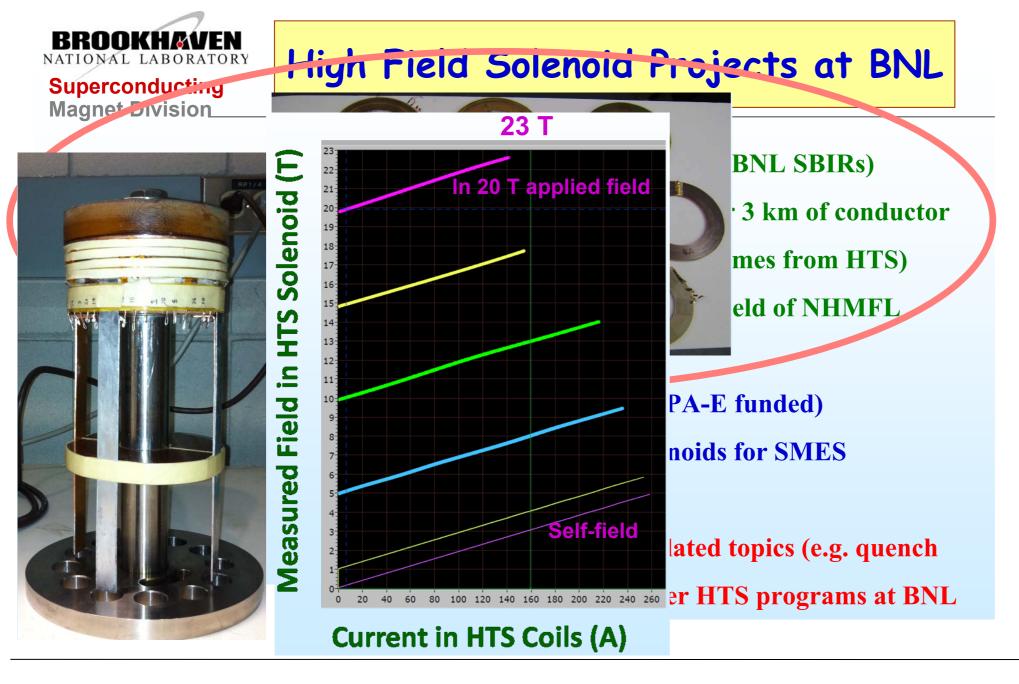
BNL SBIRs)

3 km of conductor

mes from HTS)

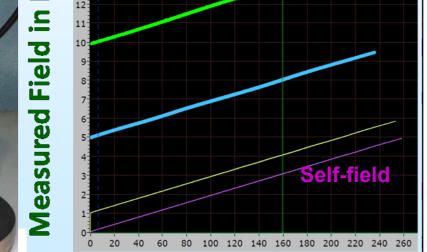
eld of NHMFL

erture HTS solenoid for SMES (ARPA-E funded)


vould directly benefit high field solenoids for SMES

mmary of selected HTS R&D on related topics (e.g. quench ss limit, radiation damage) and other HTS programs at BNL

3. Gupta: R&D Towards 40T Solenoids at BNL



3. Gupta: R&D Towards 40T Solenoids at BNL

High Field Solenoid P

Current in HTS Coils (A)

- We hope to demonstrate a ~100 mm, 10 T HTS solenoid in a few months.
- We hope to demonstrate 10-12 T, ~25 mm insert HTS solenoid in ~6 month.
- We hope to demonstrate ~20-22 T HTS solenoid by combining two in ~10 month.
- We hope to test above in ~20 T resistive solenoid at NHMFL to test HTS magnet technology to field approaching 40 T in about a year or so.
- Novel HTS quench protection R&D under way
- Vigorous R&D program with funding from many sources: SBIRs, FRIB, ARPA-E (SMES), base program,...
- **▶** MAP invited to collaborate more closely

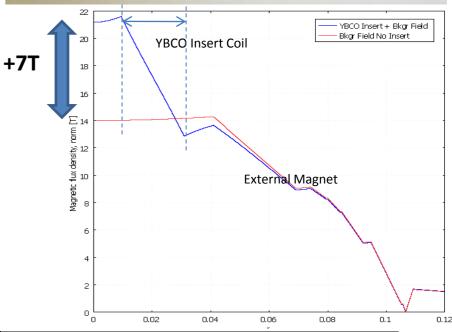
D. M. Kaplan, IIT WG2 Summary, Part 2 1 July, 2011 11

4. Lombardo: R&D Towards 40T Solenoids at FNAL

4. Lombardo: R&D Towards 40T Solenoids at FNAL

Talk Outline

- 1. YBCO Coated Conductors
- YBCO Insert Coils for High Field Magnets
 - 1. Overview of Manufacturing and Testing of YBCO insert coils
 - 2. How to account for anisotropy in YBCO magnet design both for self field and in-field operation
 - 3. Overview of Single and multi-pancake coil assembly
 - 4. Short sample predictions and test results at 77K and 4.2K at field
 - 5. High Current YBCO Cables?
- YBCO Helical Solenoid Coils
 - 1. Overview of technology
 - 2. Challenges
- 4. Conclusions

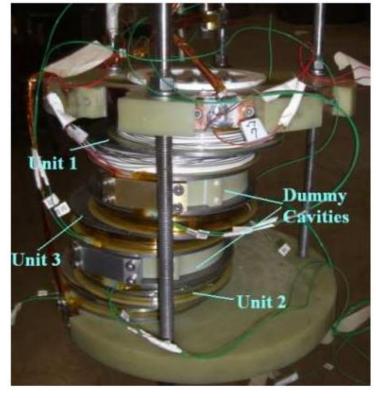


4. Lombardo: R&D Towards 40T Solenoids at FNAL

Talk Outline

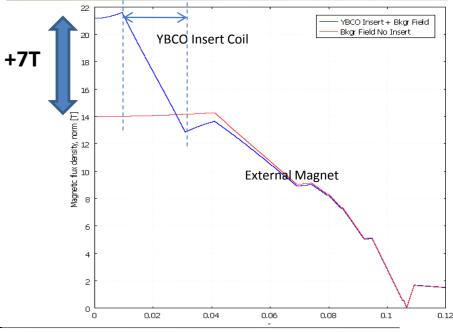
- 1. YBCO Coated Conductors
- 2. YBCO Insert Coils for High Field Magnets
 - 1. Overview of Manufacturing and Testing of YBCO insert coils
 - 2. How to account for anisotropy in YBCO magnet design both for self field and in-field operation
 - 3. Overview of Single and multi-pancake coil assembly
 - 4. Short sample predictions and test results at 77K and 4.2K at field
 - 5. High Current YBCO Cables?
- 3. YBCO Helical Solenoid Coils
 - 1. Overview of technology
 - 2. Challenges
- 4. Conclusions

12


4. Lombardo: R&D Towards 40T Solenoids at FNAL

Talk Outline

- 1. YBCO Coated Conductors
- 2. YBCO Insert Coils for High Field Magnets
 - 1. Overview of Manufacturing and Testing of YB
 - 2. How to account for anisotropy in YBCO magn
 - 3. Overview of Single and multi-pancake coil ass
 - 4. Short sample predictions and test results at 7
 - 5. High Current YBCO Cables?

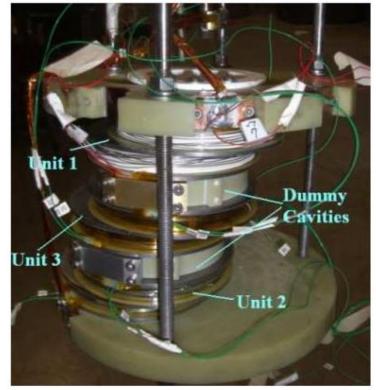

3. YBCO Helical Solenoid Coils

- Overview of technology
- 2. Challenges
- 4. Conclusions

M. Yu et al. "Fabrication and test of short helical solenoid model based on ybco tape"

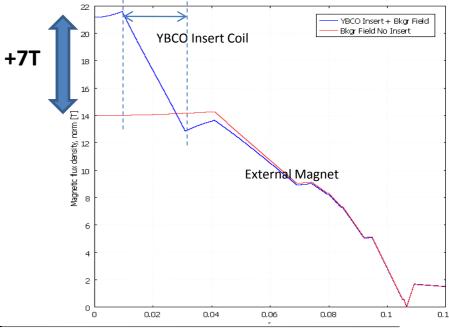
4. Lombardo: R&D Towards 40T Solenoids at FNAL

Talk Outline


- 1. YBCO Coated Conductors
- 2. YBCO Insert Coils for High Field Magnets
 - 1. Overview of Manufacturing and Testing of YB
 - 2. How to account for anisotropy in YBCO magn
 - 3. Overview of Single and multi-pancake coil ass
 - 4. Short sample predictions and test results at 7
 - 5. High Current YBCO Cables?

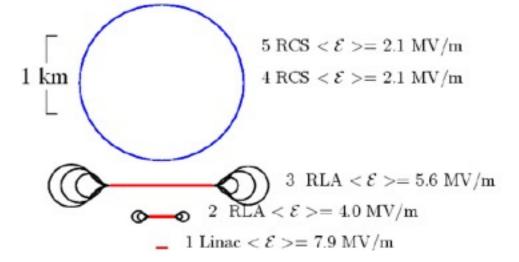
3. YBCO Helical Solenoid Coils

- 1. Overview of technology
- 2. Challenges



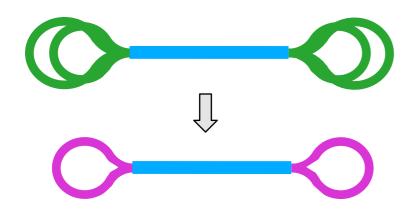
"30-40T fully superconducting magnets are achievable with technology available today."

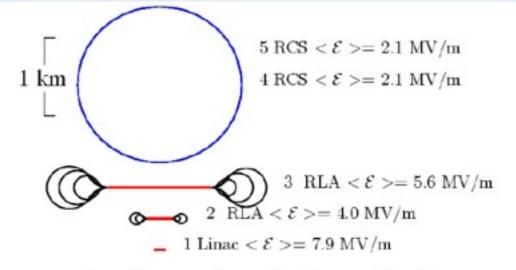

M. Yu et al. "Fabrication and test of short helical solenoid model based on ybco tape"



I. Bogacz: Acceleration

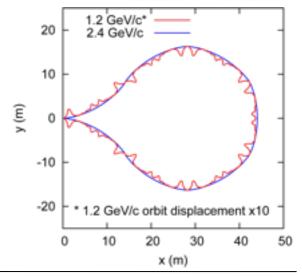
- I. Bogacz: Acceleration
- Progress reoptimizing acceleration for μ C (as opposed to ν F)


	E_{f}	n	f_{RF}	V_{avg}	Decay	P_{pk}	P_{wall}
	GeV		MHz	MV/m	%	MW	MW
					2.4		
RLA	12.5	4.5	201	4.0	7.6	105	7.8
RLA	100.0	6.5	402	5.6	5.4	469	11.7
RCS	400.0	23.0	805	2.1	10.2	396	4.7
RCS	750.0	27.0	805	2.1	4.8	393	7.2
					27.1		34.8



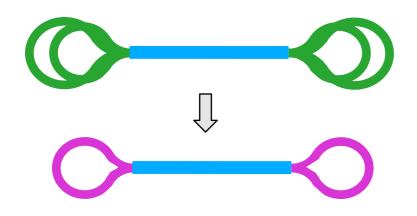
I. Bogacz: Acceleration

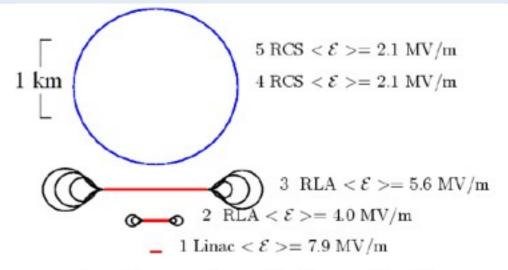
- Progress reoptimizing acceleration for μC (as opposed to VF)
- Now exploring dogbone RLAs with multipass arcs (design for 2 energies)



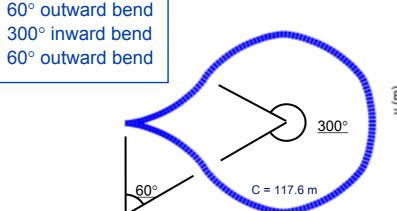
GeV		MHz	MV/m	%	MW	MW
1.5	1.0	201	7.9	2.4	46	3.4
12.5	4.5	201	4.0	7.6	105	7.8
100.0	6.5	402	5.6	5.4	469	11.7
400.0	23.0	805	2.1	10.2	396	4.7
750.0	27.0	805	2.1	4.8	393	7.2
				27.1		34.8
	1.5 12.5 100.0 400.0	GeV 1.5 1.0 12.5 4.5 100.0 6.5 400.0 23.0	GeV MHz 1.5 1.0 201 12.5 4.5 201 100.0 6.5 402 400.0 23.0 805	GeV MHz MV/m 1.5 1.0 201 7.9 12.5 4.5 201 4.0 100.0 6.5 402 5.6 400.0 23.0 805 2.1	GeV MHz MV/m % 1.5 1.0 201 7.9 2.4 12.5 4.5 201 4.0 7.6 100.0 6.5 402 5.6 5.4 400.0 23.0 805 2.1 10.2 750.0 27.0 805 2.1 4.8	Ef n f _{RF} V _{avg} Decay P _{pk} GeV MHz MV/m % MW 1.5 1.0 201 7.9 2.4 46 12.5 4.5 201 4.0 7.6 105 100.0 6.5 402 5.6 5.4 469 400.0 23.0 805 2.1 10.2 396 750.0 27.0 805 2.1 4.8 393 27.1

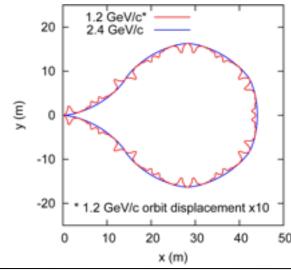
Droplet arc:





I. Bogacz: Acceleration


- Progress reoptimizing acceleration for μC (as opposed to VF)
- Now exploring dogbone RLAs with multipass arcs (design for 2 energies)



- should be less costly
- looks promising!

E_{f}	n	JRF.	Vavg	Decay	P_{pk}	P_{Wall}
GeV		MHz	MV/m	%	MW	MW
1.5	1.0	201	7.9	2.4	46	3.4
12.5	4.5	201	4.0	7.6	105	7.8
100.0	6.5	402	5.6	5.4	469	11.7
400.0	23.0	805	2.1	10.2	396	4.7
750.0	27.0	805	2.1	4.8	393	7.2
				27.1		34.8
	1.5 12.5 100.0 400.0	GeV 1.5 1.0 12.5 4.5 100.0 6.5 400.0 23.0	GeV MHz 1.5 1.0 201 12.5 4.5 201 100.0 6.5 402 400.0 23.0 805	GeV MHz MV/m 1.5 1.0 201 7.9 12.5 4.5 201 4.0 100.0 6.5 402 5.6 400.0 23.0 805 2.1	GeV MHz MV/m % 1.5 1.0 201 7.9 2.4 12.5 4.5 201 4.0 7.6 100.0 6.5 402 5.6 5.4 400.0 23.0 805 2.1 10.2 750.0 27.0 805 2.1 4.8	Ef n f _{RF} V _{avg} Decay P _{pk} GeV MHz MV/m % MW 1.5 1.0 201 7.9 2.4 46 12.5 4.5 201 4.0 7.6 105 100.0 6.5 402 5.6 5.4 469 400.0 23.0 805 2.1 10.2 396 750.0 27.0 805 2.1 4.8 393 27.1

Droplet arc:

- Lattice design
 - 1.5 TeV c.o.m Lattice
 - New 3 TeV c.o.m Lattice
- Fringe Field and Multipole Errors
- Strong-Strong Beam-Beam Simulations
- Plans

- Lattice design
 - 1.5 TeV c.o.m Lattice
 - ▶ Solution devised with $\beta^* = 1$ cm
 - displaced FF quad doublets to sweep decay electrons and give robust chromaticity correction
 - ▶ But large $\beta y_{max} \rightarrow high sensitivity to magnet errors, and approach may not work at higher energy$

- Lattice design
 - 1.5 TeV c.o.m Lattice
 - New 3 TeV c.o.m Lattice
- Fringe Field and Multipole Errors
- Strong-Strong Beam-Beam Simulations
- Plans

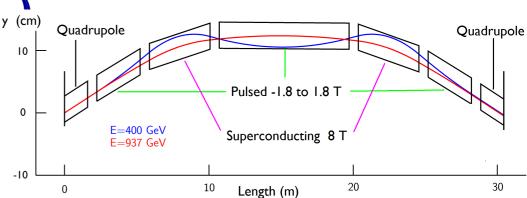
- Lattice design
 - 1.5 TeV c.o.m Lattice
 - New 3 TeV c.o.m Lattice
 - \blacktriangleright Solution devised with undisplaced FF quad triplets, gives 0.5 cm β^*
 - Solves βy_max problem, but concerned about horizontal stability

- Lattice design
 - 1.5 TeV c.o.m Lattice
 - New 3 TeV c.o.m Lattice
- Fringe Field and Multipole Errors
- Strong-Strong Beam-Beam Simulations
- Plans

- Lattice design
 - 1.5 TeV c.o.m Lattice
 - New 3 TeV c.o.m Lattice
- Fringe Field and Multipole Errors
- Strong-Strong Beam-Beam Simulations
- Plans
 - ▶ Seek compromise solution, explore sensitivity to errors, etc.
 - Need more manpower!

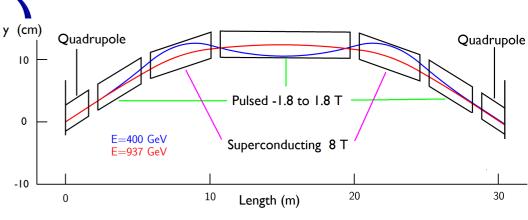
3. Summers: Fast Ramping 750 GeV Muon Synchrotron

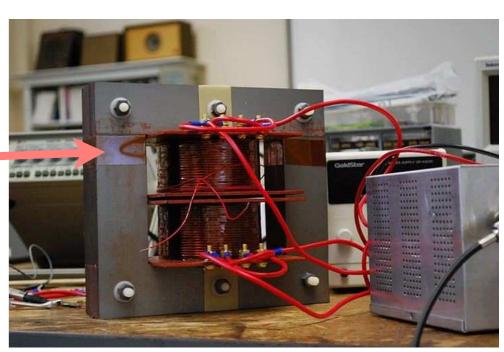
3. Summers: Fast Ramping 750 GeV Muon Synchrotron


- Synchrotrons are a lot less expensive than racetracks
- 400 Hz, 1.8 T dipole prototype is in progress. Mitred laminations from Pacific Laser Laminations are ready Need to see how well the magnetic flux circuit works.
- Al Garren and Scott Berg are working on interleaved lattice.
 What magnet errors can be tolerated? Gap is small.
 Hexapole fields in beam pipe.
- Trying to optimize keeping in phase with 1.3 GHz SRF PAC07: Adjust orbit radius & use 2 rings. $100 \rightarrow 400 \rightarrow 750$ 1.5 TeV $\mu^+\mu^-$ collider. D. Summers et al., arXiv:0707.0302

3. Summers: Fast Ramping 750 GeV Muon Synchrotron

- Synchrotrons are a lot less expensive than racetracks
- 400 Hz, 1.8 T dipole prototype is in progress. Mitred laminations from Pacific Laser Laminations are ready Need to see how well the magnetic flux circuit works.
- Al Garren and Scott Berg are working on interleaved lattice. 10 What magnet errors can be tolerated? Gap is small. Hexapole fields in beam pipe.
- Trying to optimize keeping in phase with 1.3 GHz SRF PAC07: Adjust orbit radius & use 2 rings. $100 \rightarrow 400 \rightarrow 750$ 1.5 TeV $\mu^+\mu^-$ collider. D. Summers et al., arXiv:0707.0302

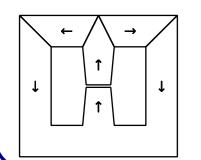


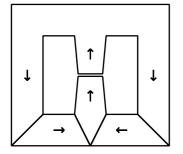


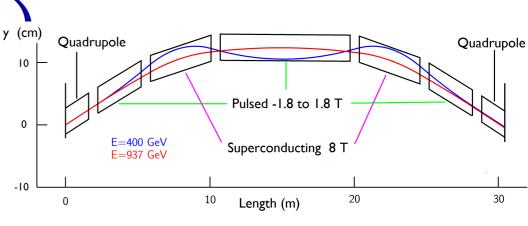
3. Summers: Fast Ramping 750 GeV Muon Synchrotron

- Synchrotrons are a lot less expensive than racetracks
- 400 Hz, 1.8 T dipole prototype is in progress.
 Mitred laminations from Pacific Laser Laminations are ready
 Need to see how well the magnetic flux circuit works.
- Al Garren and Scott Berg are working on interleaved lattice. 40 What magnet errors can be tolerated? Gap is small. Hexapole fields in beam pipe.
- Trying to optimize keeping in phase with 1.3 GHz SRF PAC07: Adjust orbit radius & use 2 rings. $100 \rightarrow 400 \rightarrow 750$ 1.5 TeV $\mu^+\mu^-$ collider. D. Summers et al., arXiv:0707.0302
 - 1st prototype revealed saturation problems (due to "T" joints?)

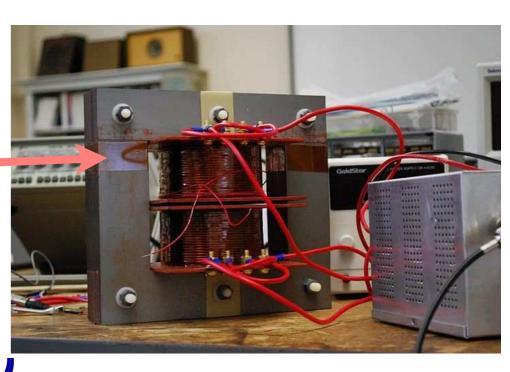
Grain Oriented Silicon Steel Dipole Prototype






3. Summers: Fast Ramping 750 GeV Muon Synchrotron

- Synchrotrons are a lot less expensive than racetracks
- 400 Hz, 1.8 T dipole prototype is in progress.
 Mitred laminations from Pacific Laser Laminations are ready
 Need to see how well the magnetic flux circuit works.
- Al Garren and Scott Berg are working on interleaved lattice. 10 What magnet errors can be tolerated? Gap is small. Hexapole fields in beam pipe.
- Trying to optimize keeping in phase with 1.3 GHz SRF PAC07: Adjust orbit radius & use 2 rings. $100 \rightarrow 400 \rightarrow 750$ 1.5 TeV $\mu^+\mu^-$ collider. D. Summers et al., arXiv:0707.0302



- 1st prototype revealed saturation problems (due to "T" joints?)
- Hope for improvement using mitred laminations

Grain Oriented Silicon Steel Dipole Prototype

Conclusions (1)

Conclusions (1)

- Muon capture already ≈ optimized
 - but can still benefit from tweaking
- Helical channels good for bunch combining
- Cooling designs well along, now need more realistic simulations
 - 3 main 6D-cooling options, 2 final
 - aim for FY12 down-select
- MICE cooling demo progressing towards ≈ 2014 conclusion

Conclusions (1)

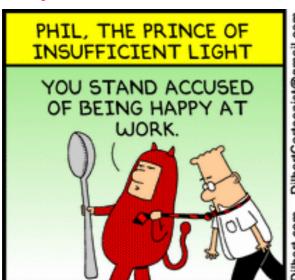
- Muon capture already ≈ optimized
 - but can still benefit from tweaking
- Helical channels good for bunch combining
- Cooling designs well along, now need more realistic simulations
 - 3 main 6D-cooling options, 2 final
 - aim for FY12 down-select
- MICE cooling demo progressing towards ≈ 2014 conclusion

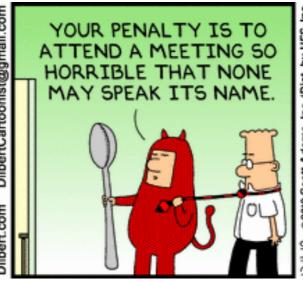
- Magnets: 40T challenging, but good progress
- Acceleration: exploring potentially lower-cost solutions
 - RLA design optimization
- Storage-rings: difficult constraints, but solutions being found
 - need to ramp up effort

Conclusions (2)

• Neuffer's conclusions:

Conclusions (2)




• Neuffer's conclusions:

Summary

